

# Radiation Performance of Memory Technologies for Space Applications

Steven M. Guertin, Jean Yang-Scharlotta, and Raphael Some

steven.m.guertin@jpl.nasa.gov 818-321-5337 NASA/JPL

#### **Acknowledgment:**

This work was supported by:
NASA SMD and STMD and the HPSC Project

### **Outline**



- The need for space memory
- Memory selection approach
- Technology study: commercial devices
- DDR2 study
- MRAM study
- Conclusions

Want to have a memory (or maybe two) to enable high total dose tolerance & without SEFI risk...

## **Space Memory Study**



- Selection of memory for space mission:
  - Reliability (including radiation)
  - SWaP
  - Application needs
- Study reported last year at RADECS pointed out parameters for needed space memory
  - Errors limited to SBUs, no SEFIs resulting in more than
     1 bit error in a single address
  - Need devices with at least 100 krad(Si) survivability
- But all current devices have problems
  - Chip density is too low
  - Cannot provide radiation performance
  - Require too much power



## **Space Memory Limitations**

- Trade space consists of NVM, high current volatile, and in-betweens
  - Generally SRAM is used and can be rad hard, but power usage is very high, and size limited to ~200Mb, requiring ~2W
  - DRAMs use about 1W / 3Gb, and coming down
    - Have significant SEFI problems
  - Flash memory is much lower power, but cannot meet
     TID requirements
- But all current devices are either too small or cannot provide radiation performance
- Occasionally there is a lucky part, but that is the exception, not the rule.

## **Desires for Space Memory**



- Volatile Memory computer memory
  - TID performance of 100-300 krad(Si)
  - No need to power cycle or reinitialize SEFI immune
  - No MBU in a single device read
  - Support DDR3 interface
  - No more than 1W/1Gb
  - ~512 Mb/device (we would like >1 Gb/device scalability)
- Non-Volatile data storage
  - TID performance of 100-300 krad(Si)
  - No SEFI
  - Support NAND flash interface (or similar)
  - ~1W/100Gb
  - >512 Mb/device (we would like >4 Gb/device scalability)
- Possible single solution
  - If all requirements could be met on a single device
    - Some "desires" can be flexed, like lower density if higher is coming
  - Probably necessary to compromise on density

## **Candidate Technologies**





#### Approaches that may work

- Identify a memory technology capable of meeting all requirements
- Partnering with a memory manufacturer
- Build control circuitry with rad hard elements, mate to viable memory technology (single-chip or stacked)

#### DRAM

- Lower than ~1W/1Gb DDR3 & DDR4
- (Some) recent devices exceed 300 krad(Si)

#### MRAM

- Non-Volatile
- Lower power than DRAM
- Lower density, but larger commercial devices are becoming available

#### Excluded:

- SRAM (power), Flash (hardness), phasechange (density), etc...
- But we continue to monitor and test promising technologies

### **Commercial Devices**



- Some commercial manufacturers are interested in providing memory arrays
  - To be mated to rad-hard controllers
- Generally they want to have data collected at the component level, rather than providing test structures
- Testing has been focused on how to test the array within a full commercial device
  - The array may contain local control circuitry that cannot be replaced



Cartoon of memory device structure indicating the "cell array", which may be a repeated structure. If the cell array is robust to radiation effects, it should be possible to build the rest of the circuit in RHBD to provide desired performance.

### **MRAM Selection**



- Working with MRAM partner
  - The bit/memory array is the key
  - Tested manufacturer's recommended commercial device
- Test plan focus on memory array
  - Test unbiased when possible
    - Part of larger approach to minimize impact of device-level circuits that can be replaced
- Tested for TID, SEE (SBU, MBU, and SEFI), and SEL
  - Targeting the program requirements: No SEL under LET 75 MeV-cm<sup>2</sup>/mg, TID of 300 krad(Si) or more
  - MBU not as critical because it can be masked by controller.

## MRAM SEL, SBU, & TID



- No SEL LET of 84 MeV-cm<sup>2</sup>/mg, 1×10<sup>7</sup>/cm<sup>2</sup> exposure
- No SBU tested in static mode
  - Non-volatile cells could easily be isolated this way

| Ion | Energy     | LET            | Fluence  | Bit Errors |
|-----|------------|----------------|----------|------------|
| Ne  | 25 Mev/amu | 1.9 MeV-cm2/mg | 2.00E+07 | 0          |
| Ar  | 25         | 7.6            | 2.00E+07 | 0          |
| Kr  | 25         | 33.7           | 2.00E+07 | 0          |

#### No TID errors

- Tested to 50, 100, 200, 300, 400, and 1500 krad(Si)
- Refreshed data on each test
- 1.1 Mrad(Si) was largest individual irradiation without refresh
- Single memory-device unbiased no change at 7 Mrad(Si)
  - This technology, but not a commercial DUT

### **MRAM SEFI**



- One interesting behavior observed in the MRAM test devices was a SEFI that resulted in all data being lost.
- This behavior is attributed to the control circuitry and is expected to be possible to mitigate in a production device.



Sensitivity of MRAM to device-wide SEFI

### **DDR2 Selection**



- Working with DDR2 partner
  - The bit/memory array is the target portion
  - The manufacturer recommended a specific DDR2 device, but can the memory array is agnostic to the DDR interface
  - Tested device is 1 Gb (64M x16) device
- TID testing performed (JPL gamma source) on 1 static-biased device, and 1 device that was refreshed
  - Refreshed is worst case, but significantly more difficult to perform
- SEE testing performed at TAMU
  - SEL, SBU, MBU, and SEFI

### **DDR2 SEL &TID Results**



- No SEL: 1.9V, 95C, using 2×10<sup>7</sup> /cm<sup>2</sup> @ LET 83 MeV-cm<sup>2</sup>/mg
- For DDR2, we test at room temperature only, and simulate higher temperature by increasing the refresh period.
- 1s refresh period is similar to ~75C operation
- 4s refresh is similar to 95C
- Only 1 bit was stuck (2 DUTs) at 300 krad(Si)
  - We observed significant changes in # of stuck bits as measurements were made
  - ~100 stuck bits with 4s refresh period
  - Worst-case... if devices were actually heated, stucks anneal
- Note that refreshed devices had ~10x higher stuck bits

## **DDR2 SBU Sensitivity**



- Test device exhibited SBUs
  - No multiple-bit upsets observed in a single address
- Compared to other DDR2 device (ISSI tested in 2016)
  - Note this ISSI device is an example of radhard by luck
  - The tested device is consistent with expected SBU performance



-Single Bit Upset sensitivity of tested DDR2 device Compared to ISSI DDR2 used in some missions.

## **DDR2 SEFI Sensitivity**



- Tested DDR2 devices showed SEFIs
- Two types of SEFIs (rough)
  - Millions of errors
  - Thousands of errors
- Large SEFIs are the result of the controller
- Small SEFIs may be intrinsic to the cell array
  - (Row SEFI, where all bits on a row are lost)



-DRAM SEFI sensitivity. Note that many SEFIs resulted in the device showing millions of errors.

### **Conclusions**



- There are no viable memories for space systems
  - Implementation is too complex multiple power planes
  - Radiation performance is insufficient 300 krad, SEFI
- One approach is to find a memory technology that can meet radiation performance
  - Partner with manufacturer
  - Build a rad-hard device with custom controller
  - We focused on MRAM and DRAM
- MRAM memory array TID results very good, SEE good except for possible device-wide SEFI
  - We infer the memory array is good
- DRAM memory array TID results very good, SEE good but with some SEFIs that are not surprising
  - A memory controller could correct them
  - Some are probably intrinsic to the design and unavoidable
- Future work: increase test samples, additional biased tests

## **Acknowledgement**



- This work was supported by NASA Space Technology Mission (STMD) and Science Mission (SMD) Directorates.
- The authors wish to thank Wilson Parker, Andrew Daniel, Avyaya Narasimham, and Paris Blaisdell-Pijuan for their efforts in support of this work.



## **End**